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Laminar-film flow with condensation or evaporation on a vertical fluted cylinder is 
examined. A kinematic wave equation describing the evolution of the film profile is 
obtained and solutions presented. The film profile evolves owing to axial, gravity- 
driven flow and transverse, surface-tension-driven flow from the crests to the valleys 
of the fluted cylinder. In the case of condensation the majority of the film reaches 
a uniform thickness and consequently there is a significant improvement in heat 
transfer compared with the classical unfluted result where the film thickens in an 
unbounded fashion. For evaporation a critical value of a parameter which involves 
the ratio of the Weber number and the gradient of the surface curvature is found 
below which the film totally drys out and above which the fluid funnels into tapering 
rivulets and only partially drys out. Typical dry-out lines are presented. For short 
cylinders the evaporative mass transfer for a fluted cylinder is slightly greater than 
that predicted for an unfluted case. However, when the cylinder is long the mass 
transfer is far less for a fluted cylinder owing to the reduction in film area associated 
with partial film dry out. 

1. Introduction 
Since the pioneering work of Nusselt (1916) for smooth cylindrical surfaces and 

Gregorig (1954) for axially fluted surfaces, there has been a great deal of work done 
on laminar-flow condensation and evaporation on vertical surfaces. The results of 
Gregorig (1954) are especially significant since condensation rates were shown to be 
significantly enhanced compared with the results for a vertical cylindrical surface. 

Despite the large amount of experimental and analytical work on the fluted surface 
problem, the reason for the large increase in condensation rate (and by analogy, the 
evaporation rate as well) is at present unknown (see, for example, Rothfus & Lavi 
(1978) for an excellent literature review on the subject; also several other articles in 
that volume are relevant). It is believed, however, that surface tension is crucial to 
the enhancement process although the evidence to support this view is still rather 
sketchy. The reason for this is that in the analytical work on this problem, simplifying 
assumptions have often been made regarding the shape of the film surface which 
renders precise interpretation of the results somewhat difficult (see Honda & Fujii 
1984; Mori et al. 1979; Panchal & Bell 1979; Webb 1979; Sideman, Levin & 
Moalem-Maron 1982; Sideman & Levin 1979; and Joos 1984 for example). As a first 
step towards a detailed understanding of the flow and heat transfer as a function of 
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tube geometry (and hence prediction of condensation/evaporation rates), this paper 
is concerned with the calculation of the flow field on an axially fluted surface and 
the effect of surface tension on the fluid motion. The geometry of the problem is 
depicted in figure 1.  Fluid enters at the top through a thin slot and passes vertically 
down the tube under the action of gravity; it emerges that at  the crests the film 
surface thins in the axial direction because of drainage into the valleys of the flutes 
as is shown in the side view of figure 1. In the present paper, it will be assumed that 
the film thickness remains thin compared with the smallest lengthscale of the problem 
(i.e. flute spacing, for example). Bounding the liquid film is a gas, for example air, 
or the vapour associated with the liquid, for which the viscosity ratio pg/pL < 1,  
where p L  and pg are the viscosities of the liquid and gas phase respectively ; because 
pg/pL + 1,  motion in the gas may be neglected to leading order. The Reynolds 
number based on characteristic film thickness h,*, Re = pL U h t / p L  is assumed to be 
small enough that inertial effects may be neglected ; the characteristic velocity in the 
film is defhed as U = pLght2 /pL,  where pL is the density of the liquid and h,* is the 
dimensional inlet gap width at the top of the tube (i.e. a nominal film thickness). 

The bulk of the previous work on the fluted-surface problem has been in the 
condensation area ; it should be noted that the precise details of the three-dimensional, 
three-component fluid flow field which the fluted surface generates have largely been 
ignored. Honda & Fujii (1984) consider condensation on a fluted surface assuming 
a thin film on the crest and a thick film in the valley; the point of cross-over is 
determined by the condition that the interfacial curvature in the thick film is almost 
constant; the velocity field is not calculated. Mori et al. (1979) consider a similar 
problem, however there is an inconsistency in the film equation if the surface tension 
coefficient v+O. The film is divided somewhat arbitrarily into three regions roughly 
corresponding to thick film, thin film and transition regions; moreover, the film 
surface in the thick film region is assumed to be a circular arc. The three-dimensional 
velocity field is also not calculated ; similar comments apply to the work of Panchal 
& Bell (1979) and Sideman & Levin (1979), while Webb (1979) was concerned with 
an overall design process and so he did not consider the velocity and temperature 
fields at all. Sideman et al. (1982) assumes the vertical flow rate to be constant for 
low surface-tension values ; the velocity in the axial direction is calculated numerically 
by a hite-difference scheme; however, the other two velocity components are not 
considered. 

It should be pointed out that Joos (1984) has obtained solutions to the problem 
of film condensation on fluted surfaces for thin films using boundary-layer techniques 
and he obtains a thermal enhancement which increases in the axial direction and is 
dependent on the amplitude of the flutes; however, his notation obscures the results 
and the film profiles apparently have a discontinuity in slope which (the authors 
believe) is a result of a mistake in his calculations (see figures 2 and 8 of Joos 1984). 
Consequently, the enhancement factors that he quotes are not likely to be correct 
and it is the purpose of the present paper to clarify the condensation problem as well 
as to present results for the evaporation problem and the purely incompressible film 
problem. In $2 the governing equations for the present problem are given in a 
coordinate system with surface-fitted coordinates. In 5 3 solutions for the velocity 
field are given and in $4 the film profiles are obtained analytically for each of the 
three cases of condensation, evaporation and the purely incompressible liquid film 
without heat transfer. The behaviour of the solutions as a function of curvature is 
detailed and a suitable enhancement factor is defined for the two problems with heat 
transfer; for the case of evaporation, a dry-out length is calculated and it emerges 
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FIGURE 1. Schematic of the fluted tube geometry operating in the evaporation mode; both side 
and top views are shown. The condensation problem is similar except that the film thickness is zero 
at the inlet region. Dimensionless coordinates and velocities ere shown. 

that the film thickness vanishes first near the crest in a distance that depends crucially 
on the value of the surface-tension coefficient, the evaporation rate, the flute spacing, 
and the surface curvature gradient. Finally, in $5,  the conclusions of the present 
study are given. 

In  what follows we shall see that the fluid is driven in the axial direction by gravity 
and that the relatively large interfacial curvature at the crests relative to the troughs 
will produce a pressure field driving a transverse flow of fluid from the crests to the 
troughs. For condensation we find that the film reaches a uniform thickness over the 
majority of the film surface except for a small region near the troughs which will 
steadily thicken owing to the inflow from the crests. This limiting film thickness over 
the majority of the film results in enhanced heat transfer compared with that for an 
unfluted cylinder. For evaporation we find that the thinning of the film at the crest 
is enhanced by a corresponding increased evaporation rate there, and the film 
ultimately drys out at the crests first. However, as we shall see, the trough region 
may or may not dry out depending on the parameters in a given problem. When the 
film does not dry out in the troughs, the fluid is found to funnel from the crests into 
tapering rivulets in the troughs which persist indefinitely in the axial direction. 
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2. Governing equations and boundary conditions 
2.1. Governing equations 

I n  this paper we consider the gravity-driven film flow down a fluted cylindrical 
surface in the geometry of figure 1. I n  order to simplify the analysis and deduce the 
basic structure of the flow with (and without) phase change, the Nusselt-type limit 
is considered whereby the convective terms in the Navier-Stokes equations are 
neglected. The liquid density is pL, and g is the acceleration due to gravity. For 
convenience we use a surface-fitted orthogonal curvilinear coordinate system (n,  s, z )  
where n is perpendicular to the cylinder surface, and s is arc length along the cylinder’s 
perimeter. The curvature of the cylinder surface is ~ ~ ( 8 ) .  The non-dimensional 
governing equations in the orthogonal (n,  s, z )  coordinate system (figure 1) are given 

e aP 
6 az 

V2u, = - 1 + We-l- -, (3) 

where K;) = dKb/ds and 

f(s, n )  = 1 -6nKb(8). 

I n  (1)-(3) the velocity field u* = (u:, u:, u:) and pressure p* are made dimensionless 

P* U* us=- 
6U’ U ’  

u: uz = - 3  u: P = a/o, 
U 

where the characteristic velocity U = pLghz2/pL,  cr is the surface tension and 

(4) 

where the asterisk denotes dimensional quantities. Here hz is the nominal liquid film 
thickness, D the crest-to-trough distance on the fluted surface of the cylinder and 
L is a typical lengthscale in the z-direction which will emerge from the analysis 
shortly. Also, 

h* h* 
L I)’ 

PL9D2 d = - E  We = -, 
cr 

are the three governing dimensionless parameters with We being the Weber number. 
I n  the subsequent analysis, 6 and e will be assumed small, i.e. the fluid layer is thin. 

Equations (1)-(3) are supplemented by the continuity equation 

and the energy equation which is given by 
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Here the temperature has been purposely left dimensional for reasons that will 
become clear subsequently. In what follows we shall neglect convective terms in the 
energy equation and restrict attention to 

V2T = 0. (8) 

This restriction is consistent with the Nusselt-type flow in a thin film if the Prandtl 
number Pr = y, C,,/kL is O(1). Here CpL, and k ,  are the specific heat, and thermal 
conductivity of the liquid respectively. In addition, from the boundary condition at 
the free surface we shall see below that owing to the condensation/evaporation 
process u, = O(k,  ATlpL h,* 6Uh,,), where AT is the temperature difference across the 
film and h,, is the latent heat. Consequently, a further restriction is implied by 
neglecting the convective term which involves the normal velocity component u,. 
Namely, using the magnitude of  u,  given above the convective term 

in the energy equation will be small provided that C,, AT/hfg is small compared with 
unity. Generally, for thin films C,, AT/h,, is much less than 0.2 and so it is reasonable 
to restrict attention to conductive heat transfer. 

2.2.  Boundary conditions 
The velocity boundary conditions a t  the surface of the fluted cylinder n = 0 (see 
figure 1 )  are 

u, = us = u, = 0 at n = 0. (9) 

Boundary conditions on the temperature will be assumed to be of the form 

T = T,, a t  n = 0, for condensation/evaporation, (10) 

where T, is the (dimensional) temperature of the wall. 
The conditions at the free surface n = h(s, z )  = h*(s, z)/h,* involve balancing 

shearing and normal stresses there. Because the vapour stress is neglected, the film 
surface is a no-shear-stress boundary which requires 

7,, - -+- S-+K u 

au, - 
7,, = -+k- - 0, an a% 

an f "( 8 1  
= 0, 

and the jump in the normal stress is proportional to the film surface curvature, 

where lVFl= {l+(-jy+(E$y}i, as f = 1-6nKb. 

In (12) we have neglected the effect of vapour recoil, i.e. the contribution to the 
normal stress jump due to the jump in the momentum flux across the interface. This 
effect is generally believed to be of secondary importance in practical applications 
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of laminar-film condensation/evaporation owing to the relatively low condensation/ 
evaporation rates involved. 

At the interface, the boundary condition on the temperature is given by 

T = qat, n = h(s, z )  ; (13) 
the cases of condensation/evaporation will be obtained according to whether 
T, < T,, or T, > qat. Finally, we shall have a kinematic boundary condition relating 
the normal component of velocity at  the film surface to the condensation/evaporation 
rate. This will be discussed fully in $3.2. 

It should be noted here that in the physical case of interest, fluid enters via a small 
slot a t  the top of the tube; there is an entrance length depending on the given inlet 
velocity distribution, in which the velocity distribution changes from its inlet profile 
to the Nusselt-type profile downstream. At  the low flow rates considered here the 
entrance region will be relatively short; consequently, it will have little effect on the 
solution and will not be discussed further. In what follows, where required, we specify 
a film thickness at z = 0 which will correspond to the inlet to the Nusselt regime. 

2.3. Fluted surfaces 
The types of surfaces considered here are called fluted surfaces and the form of these 
surfaces will now be discussed. We basically wish to address the question: given a 
curvature K ~ ( s )  what is the cross-sectional shape of the cylinder ? Consider a curve 
describing the cross-sectional shape of the cylinder with parametric equations 
z = zo(s) and y = yo(s), then the curvature of the surface is given by 

and from the definition of a unit tangent vector to the curve we have 

Combining (14) and (15), ordinary differential equations may be obtained for xo and 
yo according to 

Equations (16) may easily be integrated and the results are 

where 

I zo = s," sin K(s)  ds + X,, 

yo = Jos cos K(s )  ds + X,, 

Xo and Y, are the initial points of the curve at s = 0 and we have taken i3z0/i3s = 0 
and i3yo/i3s = 1 at s = 0 for convenience. 
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FIQURE 2. Fluted cylinder cross-sections: (a) K,, = 4 and N = 6, 12, 18, 24; (b )  K~ = 5 and 
N = 40, 60. 

The types of surfaces for which we shall present results later are those of the form 

Kb = K1 + K g  COS RS, (18) 

where for a closed curve periodicity requires 

where P,* is the dimensional perimeter and P,*/D must be an integer equal to twice 
the number of flutes, say 2N (recall that D is the crest-to-trough distance). Note that 
we have chosen the sign convention for the curvature such that K~ is positive and 
clearly it is largest at the crests and smallest in the troughs. To illustrate the types 
of surfaces that are generated by (17) and (18), on figure 2 are plots of several surfaces 
for K~ = 4 and N = 6, 12, 18, 24 and for K~ = 5 and N = 40, 60. The amplitude of 
the flutes is governed, in part, by the parameter K ~ .  As N increases, of course, D 
decreases for fixed mean radius and flute amplitude and for what follows, the number 
of flutes is limited by the requirement of a thin film (i.e. S = h:/D 4 1) ; typically 
we will find that D < L and in applications N is usually less than 60. 

9 PLM 184 
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3. Solutions for a thin film 

For a thin film 8, E + 1 and (1) gives the usual leading-order result 
3.1. The velocity and temperature fields 

aP 
- x 0, p = p(s ,  2). an 

For the momentum equation in the axial direction, (3), we have, to leading order, 

and the solution, subject to uz = 0, n = 0 and au,/an = 0 at n = h(s, z )  (see ( l i b ) )  is 
given by 

Similarly from (2), 
u, = We-'2()11Z2-nh), as 

and the continuity equation determines u, according to 

where we have nominally assumed at  this stage that €18 < O(1) .  

to boundary conditions (10) and (13) and the result is 
The conduction-dominated temperature profile is easily obtained from (8) subject 

(23) 
n 
h 

T = ( qat - T,) - + T, for condensation/evaporation. 

At this point calculation of the film surface profile is considered. 

3.2. The film surface profile 
The solutions for the velocity and temperature fields are standard Nusselt-type 
solutions except that the film surface h(s, z )  is unknown. To find this, consider the 
vector normal to the fluid film surface which is given by 

I , =  1, -8-, -€ -  
* ( ah as ah) aZ 

at leading order. Using the kinematic condition that the component of velocity 
perpendicular to the film surface should equal the mass flux due to evaporation/ 
condensation, we have 

to leading order in 8, where h,, is the heat of vaporization (condensation) and the 
dimensional heat flux at the surface is q x - k,  aT/an* a t  n* = h* (s, z) .  From (23) 
for the temperature distribution 
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Note also that, in (24), convection of heat axially in the film has been neglected 
consistent with the thin-film assumption. The (dimensionless) liquid/vapour flux at 
the interface m is given by q/pLh,,6U and in what follows m equals -Q/h ,  with 
Q = k L A T / ( p ,  h,* sUh,,), In  general, Q can be a function of s, z if, for example, the 
wall temperature in (25) T, = T,(s, 2). 

Exchanging differentiation and integration using the Leibnitz rule, and performing 
the indicated integrations using (20) and (21) for u, and u,, the following partial 
differential equation for h3 emerges from (24) : 

We can now establish the previously unspecified characteristic lengthscale L in the 
axial direction. Since €18 = D / L ,  the lengthscale L over which h changes appreciably 
owing to transverse, surface-tension-driven flow is given by requiring a balance 
between the terms on the left-hand side of (26), i.e. 

Moreover, since in practical application the surface-tension forces are weak compared 
with gravity forces, typically We-' is small so that the axial pressure gradient in (26) 
may be neglected, and finally 

---(-h3) ah3 a ap = 3Weh. Q 
a2 as as 

Equation (27) determines the film surface profile subject to an initial condition 

h = hi(s),  at z = 0. (28) 

The pressure p(s ,  z )  in (27) is determined by the normal stress boundary condition 
at the free surface, i.e. (12), 

K a2h 
p x "-6-, 

j as2 
and consequently (27) becomes 

For 6 small, f - 1 +0(6), and to leading order (30) becomes 

Finally, writing Q = Qo 0(s, z) ,  where Qo is a constant equal to the nominal value 
of Q, and defining h = (3Q0 We)!h we write (31) as 

Note that when Q = const we shall have 0 = 1. In the next section we discuss the 
solution for the cases of condensation, evaporation, and for no heat transfer. 

9-2 
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4. Film profile solutions 
4.1. Condensation 

The solution to (32) for the film profile h = (3Q0 We)%(s, z )  is conveniently obtained 
by rewriting (32) for A as 

(33) 

which is easily identified as a kinematic wave equation (Whitham 1974). Conse- 
quently, using the notion of a total derivative, we rewrite this as an evolution 
equation for h along characteristic curves z = z(s), i.e. 

ds (344  

(34W 
dz 1 
ds K;'  
- - -- on curves prescribed by - 

Furthermore, (34a) can be rewritten as 

and therefore, provided that K; + 0, the film profile h is given along characteristic 
curves by 

or 

on curves 

where so = so@, z) is the starting location of a characteristic a t  z = 0 which passes 
through s at z and li(s0) is the initial value of Ai a t  the entrance z = 0. Note, however, 
that on surfaces where &(s) = 0 at one or more points (such as the crest or trough 
of the fluted surfaces of particular interest here), we must return to (32) to obtain 
the solution. In  the present geometry K; = 0 at s = 0 , l  and therefore the axial 
evolution of h for s = 0 , l  is given by 

(37 1 
a 6 4  
- = g[8@, Z) + h4~;:.1, 
a Z  

where ~i~ = K;(S = 0 or 1 )  and the solution for s = 0 or 1 is 

1 (38) 
4 2  h4 = exp [$K;, z] { 6f(s, 0) +s I o(s,Z) exp [ -$K;. 23 d2 . 

0 

The preceding results are for surfaces of rather general cross-sectional shape and 
general condensation/evaporation rates. However, if we take Q to be constant, i.e. 
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8 = 1,  the initial film thickness to be zero, and consider fluted surfaces of the type 
described in $2.3 (equation (18)), then (36a, b) reduce to 

on curves n 2 ~ , z  = In 

Similarly, for s = 0 or 1,  (38) becomes 

where K : ~  = - n 2 ~ ,  at the crests s = 0 and K : ~ =  +xe,, at the troughs 8 = 1. Since 
K:, < 0 at the crest, the film thickens to an asymptotic value of h+(  - 1/~:~) !  as 
z+ co . At the trough s = 1, K : ~  > 0 and the film thickens exponentially as z + co . The 
evolution of a generic film profile valid for all K ~ ,  &, and We for this case is shown 
in figure 3 where we plot H = ($r~,)% = ( 7 ~ ~ , / 4 & ~  We)fh versus 8 for a few values of 
Z = n2,, z. Note that the film profile plotted is for one segment of fluted cylinder (crest 
to trough) and therefore the pattern is repeated going around the fluted cylinder. 
Clearly as z + a ,  the majority of the film tends to an asymptote, while in the 
immediate vicinity of the trough the film is thickening exponentially. This is in 
marked contrast to the well-known result for an unfluted cylinder where the film 
thickens everywhere without bound at a rate proportional to a. This feature, as we 
shall see below, is directly responsible for a net heat transfer enhancement associated 
with fluted cylinders, and it has not been clearly identified before. 

The solution in the neighbourhood of the trough where the film is growing 
exponentially is clearly a source of non-uniformity in the present solution for 
sufficiently large 2. From figure 3 we see that this non-uniformity begins to manifest 
itself when Z = x e ~ , z  has a value of about 4.0 since aH/as is becoming large in the 
troughs. This is due in part to the omission of the order-& term in the pressure-field 
equation (29). If we reinstate the term &aeh/as2 into the pressure field we can smear 
out the profile in the neighbourhood of the trough and extend the validity of the 
present solution. In addition, it is appropriate to include higher-order surface-tension 
effects associated with the fact that film surface curvature is no longer approximated 
by the cylinder curvature KJs).  This boundary-layer analysis in the neighbourhood 
of s = 1 will be discussed in a separate paper. We do not, however, believe that the 
net heat transfer rate will be significantly affected by the modifications made to the 
film profile in this boundary layer. 

For the condensation case under consideration, where the initial film thickness is 
zero, it is instructive to recast the film thickness in dimensional form in order to 
identify the characteristic film thickness. From the original formulation we have the 
dimensional film thickness given by 

h* = h: h(s, Z )  = h:(3&, We)%(s, z),  

where &, = kLAT/pLh: SUh,, and We = pLgDa/u. Consequently, we see that 

h* = D[kL AT/LL/P= Dh,, u ] U ( ~ ,  Z )  
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FIQURE 3. Condensation film profiles versus s for seven axial locations. Initial thickness hi = 0 and 
constant wall temperature (y = 0). -, Z = 0.1 ; ---, 0.5; -.-, 1.0; ---- 9 ,  1.5. ---- I 2 . (  0 .  
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and therefore the characteristic film thickness can be written as 

where pL CpL D(u/pL)/kL is a P6clet number based on the velocity scale u/pL and 
C ATlh,, is a measure of the subcooling. From this we can also estimate the axial 
position along the cylinder where the growing film will violate the thin-film 
assumption h*/D 4 1.  From the above we see that the present solution is valid 

p 4  

provided that 

Examining this in the troughs where the film is growing exponentially, we have 

from (40) and we find that the thin-film assumption will be satisfied for axial positions 
that satisfy 

p L  Dh,, U K ~  n2 
Z = n 2 ~ , z < 0  i l n  1 +  { [ kLATpL 

As expected, if the temperature difference AT is large, the condensation rate is high 
and the solution is restricted to relatively small 2. In  applications the working fluid 
is often ammonia (see Owens 1978 for a complete list of physical properties) and we 
have calculated for this case the limiting value of z* for validity of the thin- 
film assumption based on a saturation temperature of 294.4 K, AT = 0.5 K and 
D = 14 mm (0.55 in.). For ammonia, this choice for D corresponds to a length 
L = WeD = 0.75 m (2.46 ft). Therefore for K,, = 1 we find z* = zL 5 1.42 m (4.66 f t )  
and as K~ increases, the restriction becomes much more severe. For example, for 
K~ = 5 we find z* < 0.3 m (1 ft). Note that these results are only weakly dependent 
on AT, but are strongly dependent on D. 

Results for a second case corresponding to a variable wall temperature of the form 
Tw = Two + ATw cos xs are shown in figure 4. Here Two is the mean well temperature 
and we take ATw > 0 so that the troughs are cooler than the crests. This particular 
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FIQURE 4. Condensation film profiles versus 8 for seven axial locations. Initial thickness hi = 0 and 
variable wall temperature: (a)  y = 0.5, (b) y = 0.9. -, 2 = 0.1; ---, 0.5; -.-, 1.0; -----, 
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choice for the temperature variation is motivated by the fact that the coolant flowing 
inside the fluted cylinder would more effectively cool the troughs, which appear 
as crests to the coolant inside the cylinder. Corresponding to this choice for 
wall temperature variation we have Q = Qo(l -y  cos5cs) where we define 
Qo = k,(T,,-Two)/pLh:6Uhl, > 0 and y = ATw(T,at-Two) > 0. For condensation 
over the entire film surface we restrict attention to values of y less than unity. In  
this case the film again starts with zero thickness at the entrance, but experiences 
(for y > 0) decreased deposition of liquid into the film owing to condensation at the 
crests and an increase in the troughs. It should be pointed out that for this case Joos 
(1984) presented results from a similar solution obtained using a boundary-layer 
formulation, but his results show a spike in the film profile in the interior 0 < s < 1 
which travels from crest to trough as z increases (see Joos 1984, figure 2b);  note that 
our results do not show this spike, and it is the present authors’ conviction that there 
is an error in Joos’ results. Comparing figures 3 and 4, it is clear that a substantial 
temperature variation is required in order to significantly modify the film profile. 

The heat transfer from one segment of fluted surface between s* = 0 and D ,  and 
z* = 0 and z* is given by 
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where all quantities are dimensional at this stage. The total heat transfer from the 
cylinder between z* = 0 and z* equals 2NQ*, where N is the number of flutes. We 
now cast this result in terms of non-dimensional variables and since the z-dependence 
enters in the combination x 2 ~ o  z we introduce Z = x 2 ~ o  z = x2/c0 z*/L (see, for 
example, (39b) or (40)). Consequently, for the case of uniform wall temperature we 
obtain 

dZds Q* = 

Furthermore, motivated by the solution for h(s,  Z), we write 

h(s,  2) = (-yH(s, 4Q0 We 2) 
x K 0  

(43) 

and using the relations Qo = k,  AT/p ,  h,* SUh,,, U = pL ghZ2/pL and L = WeD, we 
obtain 

(44) 

The corresponding well-known classical result due to Nusselt for an unfluted surface 
and uniform wall temperature (y = 0) is given by 

where z* = Lz = ( L / x 2 ~ , )  2. Note that this classical result is readily obtained from 
(44) using H(s ,  z ) ,  which follows from the solution of (32) taking K; = 0, i.e. assuming 
no flutes. Finally, an enhancement factor may be defined as 

--- a,=-- 
Q S U  

(45) 

More generally, if we include variable wall temperature then taking account of this 
fact in (41), we now obtain 

In addition, if we include variable wall temperature in the classical unfluted result 
then the film thickness for an unfluted cylinder having zero initial film thickness may 
be written in the present notation as 

HNu = [(by cos7LS)Ey. x 

Consequently, the rate of heat transfer for this slightly modified classical case is given 
by Q* above, replacing H(s ,  2) with H,,(s, Z ) ,  and we obtain an enhancement factor 

dZ ds 

Q N ~  [ (1-7 cosxs)fds ’ 

(1-7 cosxs) 

ac=*-- 4 d B  

J O  

where H(s ,  2) is the film thickness profile function for the fluted cylinder of interest. 
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Now for the fluted surfaces given by (18) and the special case when the film has 
zero initial thickness and 0 = 1 - y cos AS corresponding to the case of variable wall 
temperature discussed earlier, we have from (36a) and (43) 

(47) 
[ s’ (1 - y cos 7cs’) sin4 xs’ ds’ 

H(s ,  2) = (‘I z, 
sin4 7cs 

where so(s, 2) can be obtained from the equation for the characteristic curves (39b) 
and y = 0 yields the constant-wall-temperature case. 

The integral term appearing in (44) for constant wall temperature (y  = 0) and 
(46a) for variable wall temperature, 

dZ ds 
(1 - y  cosxs) 

’(‘) = so1 Joz H(s ,  2) 

is plotted in figure 5 versus 2 = x%, z* /L for the fluted surface given by (18) for 
constant wall temperature and for the two temperature variations considered 
previously (see figure 4), i.e. y = 0.5 and 0.9. Since the film tends to one having a 
nearly uniform thickness over the majority of the film, we see that as 2 gets large, 
F(2) and consequently, Q* grow linearly. Therefore, since 

2 = x%, z*/ We D = (+K, g/pL go3) z*, 

if we consider a cylinder of fixed length z*, then increasing K,, decreasing D, or 
increasing surface tension all increase the net heat transfer rate by increasing 2. The 
corresponding enhancement factors a, for these cases are shown in figure 6. Note that 
a, starts at unity at 2 = 0 since the fluted film profile asymptotes to its unfluted 
counterpart for small 2, and that the enhancement increases most rapidly for 
moderate 2, but then increases more slowly. Consequently, increasing 2 (by 
increasing K,, B,  or z*,  or by decreasing D) has its greatest payoff early and although 
increasing 2 continues to improve the enhancement, the rate of improvement 
diminishes. For example, all other things being equal, increasing the cylinder length 
z* is likely to have a practical limit with regard to improving the overall design. Note 
also that values of a, as large as 5 can be found in the literature. From the present 
results it is quite apparent that a, will attain a value of 5 at a very large value of 
2 and therefore it is somewhat impractical to numerically evaluate the value of 2 
where a, = 5 since this involves marching numerically forward in 2. However, since 
F(2) is very nearly linear for 2 greater than about two we can easily extrapolate the 
values of F(2) for large 2 using linear regression and thereby estimate a,. From a 
linear regression using data for F between 2 = 10 and 40, we find F = 1.149 Z+ 0.873 
and consequently a, = 2.06 at 2 = 100, a, = 3.64 at 2 = 1000, and a, = 5.15 at 
2 = 4000 (note that the correlation coefficient for the fit was extremely close to unity, 
indicating a near perfect fit to a straight line). 

4.2. Evaporation 
The case of evaporation is similar except that Q < 0 and there will be a finite film 
thickness at the inlet to the tube. If we again consider variable wall temperature it 
is appropriate here to consider the troughs to be hotter than the crests and so we 
take T, = Two- AT, cosxs where AT, is positive. The troughs are hotter than the 
crests in this case because we imagine that the hot working fluid inside the fluted 
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FIQURE 5. Heat transfer parameter P(2) for condensation on a fluted cylinder. Wall 
temperature variations: -, y = 0 (constant wall temperature); -----, 0.5; ----, 0.9. 
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FIGURE 6. Heat transfer enhancement a, versus 2 for condensation. Wall temperature 
variations: -, y = 0 (constant wall temperature); -----, 0.5; ----, 0.9. 

cylinder heats the troughs more effectively since they appear as crests on the inside 
of the cylinder. With this choice we then have 

Q = -Qo(l-y cosxs), 
where we now take 

kL(Tw,,-T,at), 0, Y =  ATw > 0. 
‘O = pL h,* 6Uh,, Two - Tsat 

For the fluted surfaces given by (18), uniform initial film thickness and 
Q = - &,( 1 - y cos xs) the film thickness is given by 

h(s, 2) = ( - y H ( s ,  4Q0 We 2) 
=KO 

(48) 

(1 - y cos xs’) sin: AS’ ds’ 

sin; xs 

[ H; sin4 xs,, - 
with H ( s ,  2) = 
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for 0 < s < 1 where so(s, 2) is again given by 2 = In {tan ($cs)/tan ($so)}, and at the 
crests s = 0, and troughs s = 1,  we have respectively 

H ( 0 , Z )  = - [ ( i -y+$H?)  exp(-+Z)-(l-y)]f, 
(4Y 

In the above expressions Hi = ( A K ~ / ~ & ~  We)!hi and it is appropriate to take the 
characteristic film thickness h: equal to the initial thickness and hence hi = 1.  

From (49a)  we see that dry out or vanishing of the film occurs at the crests at a 
distance 

(note that to have evaporation over the entire film y < 1 ) .  On the other hand, dry 
out at the troughs will only occur for Hi < [3(1 +y) /4n]!  in which case the film will 
vanish in the troughs at 

z = t l n [  l + y - $ H :  l + y  ] . 
Consequently, the entire film vanishes only when 

Hi < [3(1 + y ) / 4 n ] f  = 0.6990(1 + y ) f .  

The dry out or contact lines z d ( 8 )  computed by evaluating H(s ,Z , )  = 0 from 
(48) for a few cases of Hi are shown for constant wall temperature (y = 0 )  in 
figure 7. A rough sketch of how the film might appear on a fluted cylinder is 
shown in figure 8. Note that when total dry out does not occur the film drys out 
at the crests and the fluid funnels into tapering rivulets in the troughs. Corresponding 
film profiles H(s ,  2) are shown in figure 9 for two values of Hi one below the critical 
value resulting in total dry out (Hi = 0.66) and one above the critical value in which 
case total dry out does not occur (Hi = 1.0). In the case when total dry out 
occurs (Hi = 0.66, figure 9 a )  notice that the film steadily thins from its initial 
thickness uniformly over the film. In  contrast, when the film only partially drys out 
(Hi = 1 .O, figure 9b)  we find the usual exponential thickening of the film in the troughs 
near s = 1 and thinning and dry out starting at  the crests. Note also that this general 
dry-out behaviour is markedly different from the dry out of a film on an unfluted 
cylinder where for constant wall temperature HNu = [H; - Z / x ] t  and consequently 
total dry out always occurs at  Z = nHt. The film on a fluted cylinder drys out at the 
crest first and this point always occurs before the dry-out point on an unfluted 
cylinder owing to the exponential thinning of the film at the crest of a fluted cylinder. 
Furthermore, the film at the trough of a fluted cylinder will always extend beyond 
the dry-out point 2 = xH: for an unfluted cylinder. 

To cast the evaporation dry-out-line results in physical terms recall the definitions - 
of Hi and 2, 

Therefore, the physical location of the dry-out or contact lines can be expressed as 

- ' d = - Z  - ; H i  , 
D * n 2 ~ o  we ("* D ) 
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FIQURE 7. Dryout lines for evaporation on a fluted cylinder (y = 0), i.e. curves Z,(s) where the 
film thickness vanishes (note 2 is plotted down in the direction of motion of the falling film). 
EvaporatingfilmparametersHi = (rr~,/4&, We)$:-,H i -  - 0.6;. . . . * * * * ,0.66;-.-,0.69;-----, 
1.0; ----, 2.0. 

FIGURE 8. A sketch of the dry-out character of evaporating films (see also figure 7). The two 
figures on the left show films that totally dry out and the figure on the right shows the 
tapering rivulet formation. 

where Hi = ( R K , / ~ & ,  We)t, Qo = k, A T / p ,  h,* SUh,, and 2, is a function of position s 
and the quantity Hi termed the evaporating film parameter (figure 7). Small Hi and 
consequently total dry out corresponds to small curvature gradient K ~ ,  large Weber 
number or small surface tension Q, and large mass transfer rate Q0 or temperature 
difference AT. Partial dry out and rivulet formation results for values of Hi greater 
than 0.6990 (when y = 0) and results from large K~ or Q and small mass transfer rate 
Qo. Furthermore, from (51) we see that the absolute position of the dry-out line 
scales with We/Ko.  

For evaporation we can also identify an enhancement parameter a, for one flute 
segment, namely, the ratio of the liquid masses evrtporated up to a point z* for a fluted 
and unfluted cylinder. Consequently, it is similar to the condensation case, (45,46b) 
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FIQURE 9. Evaporation film profiles versus s for seven axial locations and constant wall temperature 
$ 3 ;  -.-, 0.4; ---_- 0 5  .-__- 0 .7 .  ....... (y = O) . (a )Hi  = 0.66and---,Z = 0.1;--- , . ,  , ,  

1.0; -, 1.18. (b)  Hi = 1.0 and ---, 2 = 0.1 ; ---, 0.5; ---, 1.0; ----- , .  1 25. 2 ----, 
1.50 ; * * * 1 * 1 ,  2.0; -, 3.0. 

except that the integration is only over the wetted portion of the cylinder surface. 
For constant wall temperature ( y  = 0) we have, 

where Sd(2)  is the dry-out curve as a function of 2 (the inverse of zd(8) plotted in 
figure 7). Note that for points 2 beyond where the film on an unfluted cylinder totally 
drys out, i.e. 2 = XH;, the quantity a, is not defined. Also, in the case of evaporation, 
the significance of the enhancement parameter a, becomes less clear than for 
condensation. For example, if the net heat transfer is the primary concern one should 
account for the heat transfer from the dry regions of a partially dried out film on 
a fluted cylinder. Nonetheless the behaviour of a, is still worth exploring and it is 
plotted in figure 10 for one case which totally drys out (Hi = 0.66) and for two other 
flute cases which do not totally dry out (Hi = 0.85 and 1.0). In  each case the 
enhancement parameter is greater than one up to the point where the fluted film 
partially drys out. After that point a, drops below one and the mass transfer is less 
than that predicted by the classical unfluted theory. Initially a, is greater than one 
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FIQURE 10. Mass transfer enhancement a, versus 2 for evaporation. Constant wall temperature 
and evaporating film parameters: -, Hi = 0.66; . . . . . . , 0.85 ; ---, 1 .O. 

because over the majority of the fluted cylinder the film thins more rapidly than does 
a film on an unfluted surface. The only exception, of course, is close to the troughs 
where the film grows more rapidly. Howevey. overall there is a net enhancement in 
mass transfer. Once the film on a fluted cylinacr partially drys out then there is less 
surface area and a significant portion of the remaining film is thicker than the 
corresponding unfluted cylinder film. Consequently, a, decreases fairly rapidly. Since 
the unfluted film drys out at Z = x H t ,  a, in figure 10 is not defined beyond 
2 = 0.5961 whenHi = 0.66, and 2 = 1.6399 when Hi = 0.85, i.e. the last point plotted 
in each case, and 2 = x when Hi = 1.0. Note also that in the fluted case with 
Hi = 0.66 total dry out is completed in the troughs at 2 = 1.188 (see figure 7) ,  i.e. 
the troughs dry out well beyond where its unfluted counterpart totally drys out (the 
other two cases do not totally dry out). 

4.3. No heat transfer 

In this case Q = 0 and (36) gives 

for 0 < s < 1 and 

for s = 0 , i .  For the fluted cylinder we therefore have 

A = Ai exp GK;, 21 

for 0 < s < 1 and 

(54) 

The film profile for hi = 1 is shown in figure 11 for a few values of 2 = X ~ K ~ Z .  The 
film becomes exponentially thin at the crest but never drys out. In practice one would 
expect short-range forces to play a role when the film gets sufficiently thin and dry 
out would probably occur. 
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FIGURE 11.  Film profiles without condensation/evaporation and initial thickness h, = 1 .O. -, 
2 = 0 . ,  1. --, 1.0; ---, 2.0; -----, 3.0. 

5. Summary and conclusions 
We have examined the flow and heat transfer in laminar-film condensation/ 

evaporation on vertical surfaces with curvature-induced transverse surface tension 
flow. The relatively high curvature on the crests relative to the troughs produces a 
pressure field that drives fluid from the crests to the troughs. Consequently the film 
generally readjusts itself, becoming thicker in the troughs and thinner at the crests. 
For condensing films on fluted surfaces the film thickens and reaches an asymptotic 
thickness over the majority of the film surface. This limiting film thickness results 
in a significant heat transfer enhancement compared to Nusselt 's classical result for 
unfluted surfaces. In the troughs the film generally thickens exponentially and 
provides an efficient flow path for the condensate. For an evaporating film, the 
transverse surface-tension flow, which is thinning the film at the crests, is reinforced 
by the increased evaporation rate at  the crests due to the film thinning. This enhanced 
evaporation rate at  the crests ultimately leads to dry out of the film at the crests. 
Furthermore, we find that during evaporation of a film for which 
( 7 ~ ~ ~ / 4 & ~  We)! < 0.6990 (1 + y)f the film totally drys out. Otherwise, the evaporating 
film only partially dries out and funnels into tapering rivulets in the troughs which 
steadily thicken. Mass transfer during evaporation is greater for a fluted cylinder than 
for an unfluted cylinder for relatively short cylinders, but is significantly less for long 
fluted cylinders due to the dry-out characteristics of the film. Finally, it  should be 
noted that gravity-driven film flows are susceptible to instabilities, even at relatively 
low flow rates (see, for example, Mei 1966 and Yih 1963), and therefore some care 
should be taken when applying the results presented here in practical applications. 

This work was carried out in the course of research sponsored by the National 
Science Foundation under grant MSM 85-13795 (R.E. J.) and by support from the 
Battelle Columbus Labs (A. T. C.) through the Gas Research Institute, Chicago, 
Illinois. 
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